确定了一个人工智能应用程序后,开发 AI 模型第一步就是设计数据(即识别和记录数据来源)。 设计应当是一个迭代过程——用试验数据来开发初始的 AI 模型,然后再收集额外数据来修补模型的局限性。设计的关键标准是确保数据适用于任务,并覆盖足够的范围来代表模型可能遇到的不同用户和场景。 而目前用于开发 AI 的数据集通常覆盖范围有限或者具有偏差。例如在医疗 AI 中,用于开发算法的患者数据的收集在地区分布上不成比例,这会限制 AI 模型对不同人群的适用性。 提高数据覆盖率的一种方法,是让更广泛的社区参与数据的创建。目前最大的公共数据集 Common Voice 项目就是一个例证,该数据集包含了来自 166000 多名参与者的 76 种语言的 11192 小时语音转录。 而当代表性数据难以获得时,可以用 合成数据 来填补覆盖空白。比如真实人脸的收集通常涉及隐私问题和抽样偏差,而由深度生成模型创建的合成人脸现在已经被用于减轻数据不平衡和偏差。在医疗保健领域,可以共享合成医疗记录来促进知识发现,而无需披露实际的患者信息。在机器人技术中,真实世界的挑战是终极的测试平台,也可以用高保真模拟环境来让智能体在复杂和长期任务中实现更快、更安全的学习。 但合成数据也存在一些问题。合成数据与现实数据之间总是存在差距,所以在将基于合成数据训练的 AI 模型转移到现实世界时,通常会出现性能下降。如果模拟器的设计不考虑少数群体,那么合成数据也会加剧数据差异,而 AI 模型的性能高度依赖其训练和评估数据的上下文,因此在标准化和透明的报告中记录数据设计地上下文就非常重要。 现在,研究人员已经创建了各种 「数据营养标签」(data nutrition labels)来捕获有关数据设计和注释过程的元数据(metadata)。 有用的元数据包括数据集中参与者的性别、性别、种族和地理位置的统计数据,这有助于发现是否有代表性不足的亚群未被覆盖。数据来源也是一种元数据,它跟踪数据的来源和时间以及产生数据的过程和方法。 元数据可以保存在一个专门的数据设计文档里,数据文档对于观察数据的生命周期和社会技术背景来说非常重要。文档可以上传到稳定且集中的数据存储库(例如 Zenodo)中。
欧宝平台登录:斯坦福李飞飞团队新研究登 Nature 子刊:实现可信 AI数据的设计、完善、评估是关键
发布时间: 2022-09-16 19:56:45 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播
相关信息
-
欧宝体育手机版app直播:五个进程让你成为数据剖析高手
运营人的作业中,有不少需要对产品数据、活动数据进行搜集剖析,并从数据中发现问题点,做出优化战略的部分。那么本文先将眼光集合到数据剖析上,聊聊怎么做运营数据剖析。 经过拆解和剖析,清晰运营方针,厘清运营动作,并终究将整理成果表现在报表中的进程。 详细比如,在推行活动中有个返券的活动,从数据上看,收入因而活动提升了0.5%,那么问题来了?怎么样做到的?能不能复制到其他活动?是否可以构成惯例? 由于要了解全貌。经过报表中的日常数据,了解运营作业的全貌。1)看到正常事务的工作状况;2)定位反常,发现问题。 了解报表的组成后,还需要看懂运营报表中的方针,才干线. 怎么做好方针监控? 内容产值别离:A类内容产值、B类内容产值、C类内容产值、D类内容产值…… 内容产值:1级账号内容产值、2级账号内容产值、3级账号内容产值、4级账号内容产值…… ②怎么验证?进一步深化发掘改变反常的原因,排查寻觅新增账号反常增加的原因: 相较于产品功用的更新迭代或许运营行为,运营动作更多环绕着用户打开。所以针对运营所做的数据支撑,也首要 -
欧宝体育手机版app直播:数据发掘的剖析办法能够分为两类你们知道是哪两类吗?
数据发掘(data mining),便是从存放在数据库、数据仓库或其他信息库中的很多的数据中获取有用的、新颖的、潜在有用的、终究可了解的形式的非普通进程。 在人工智能范畴,习惯上又称为数据库中的常识发现(knowledge discovery in database,KDD),也有人把数据发掘视为数据库中常识发现进程的一个根本进程。常识发现进程由以下三个阶段组成:①数据预备;②数据发掘;③成果表达和解说。数据发掘能够与用户或常识库交互。 并非一切的信息发现使命都被视为数据发掘。例如,运用数据库办理体系查找单个的记载,或经过互联网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)范畴的使命。尽管这些使命是重要的,或许触及运用杂乱的算法和数据结构,可是它们首要依靠传统的计算机科学技能和数据的显着特征来创立索引结构,然后有用地安排和检索信息。尽管如此,数据发掘技能也现已用来增强信息检索体系的才能。 (1)直接数据发掘:方针是使用可用的数据树立一个模型,这个模型对剩下的数据,即一个特定的变量(能够了解成数据库表的特点,即 -
欧宝体育手机版app直播:白剑波:文本大数据发掘使用剖析
大数据是一个事关我国经济社会开展大局的战略性工业,大数据技能为社会经济活动供给决议计划根据,进步各个范畴的运转功率,提高整个社会经济的集约化程度,关于我国经济开展转型具有重要的推进效果!2016年,由我国首席数据官联盟与网加年代网建议并承办,北京大学信息化与信息管理研讨中心、我国新一代IT工业推进联盟、数邦客协办的“影响我国大数据工业进程100人”大型人物专访活动全面发动,被采访目标别离来自政府、产、学、研、企各个范畴,他们将从不同视点,不同层面向咱们论述当时大数据工业抢手、难点、疑点问题,为我国大数据工业健康、继续开展探究经历、保驾护航,敬请重视! 我国首席数据官联盟专家组成员,北京才智星光信息技能有限公司总裁。北航计算机专业硕士。从前担任翰云年代科技有限公司总裁,NOKIA方位服务部门大我国区产品总监,甲骨文参谋咨询服务部我国区施行总监,Sun公司ISV工程部高档司理,北航教师。 本期特邀嘉宾我国首席数据官联盟建议人刘冬冬,就文本大数据使用与白剑波先生进行深入探讨。 刘冬冬:白总,今日谈文本大数据,还请您先给咱们介绍一下文本大数据发掘的基本状况,好 -
欧宝体育手机版app直播:数据发掘分为哪两大类?
1)依据发掘的数据库类型分类:数据发掘体系可以依据发掘的数据库类型分类。数据库体系自身可以依据不同的规范(如数据模型、数据类型或所触及的使用)分类,每一类或许需求自己的数据发掘技能。这样,数据发掘体系就可以相应分类。 例如,依据数据模型分类,可以有联系的、业务的、目标-联系的或数据仓库的发掘体系。假如依据所处理数据的特定类型分类,可以有空间的、时刻序列的、文本的、流数据的、多媒体的数据发掘体系,或万维网发掘体系。 2)依据发掘的常识类型分类:数据发掘体系可以依据所发掘的常识类型分类,即依据数据发掘的功用分类,如特征化、区别、相关和相关剖析、分类、猜测、聚类、离群点剖析和演化剖析。一个归纳的数据发掘体系一般供给多种和/或集成的数据发掘功用。 此外,数据发掘体系还可以依据所发掘的常识的粒度或笼统层进行区别,包含广义常识(高笼统层)、原始层常识(原始数据层)或多层常识(考虑若干笼统层)。一个高档数据发掘体系应当支撑多笼统层的常识发现。数据发掘体系还可以分类为发掘数据的规则性(一般呈现的形式)与发掘数据的奇异性(如反常或离群点)。一般地,概念描绘、相关和相关剖