欧宝平台登录:机器视觉系统的组成与视觉系统原理

发布时间:2022-08-21 11:18:52 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播

  机器视觉发展导读:20世纪60年代,机器视觉系统开始在国外研究。后来随着大规模集成电路发展,视觉系统开始走向实用化。进入80年代,微型计算机崛起,使机器视觉系统开始深入各领域,应用步入细分化。本文详细叙述了机器视觉系统各部分组成及工作原理。

  机器视觉系统组成:从机器视觉系统字面意思就可看出主要分为三部分:机器、视觉和系统。机器负责机械的运动和控制;视觉通过照明光源、工业镜头、工业相机、图像采集卡等来实现;系统主要是指软件,也可理解为整套的机器视觉设备。下面我们重点说下机器视觉系统中的五大模块:

  照明光源作为机器视觉系统输入的重要部件,它的好坏直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的视觉光源,以达到最佳效果。常见的光源有:LED环形光源、低角度光源、背光源、条形光源、同轴光源、冷光源、点光源、线型光源和平行光源等。

  镜头在机器视觉系统中主要负责光束调制,并完成信号传递。镜头类型包括:标准、远心、广角、近摄和远摄等,选择依据一般是根据相机接口、拍摄物距、拍摄范围、CCD尺寸、畸变允许范围、放大率、焦距和光圈等。

  工业相机在机器视觉系统中最本质功能就是将光信号转变为电信号,与普通相机相比,它具有更高的传输力、抗干扰力以及稳定的成像能力。按照不同标准可有多种分类:按输出信号方式,可分为模拟工业相机和数字工业相机;按芯片类型不同,可分CCD工业相机和CMOS工业相机,这种分类方式最为常见。

  图像采集卡虽然只是完整机器视觉系统的一个部件,但它同样非常重要,直接决定了摄像头的接口:黑白、彩色、模拟、数字等。比较典型的有PCI采集卡、1394采集卡、VGA采集卡和GigE千兆网采集卡。这些采集卡中有的内置多路开关,可以连接多个摄像机,同时抓拍多路信息。

  机器视觉软件是机器视觉系统中自动化处理的关键部件,根据具体应用需求,对软件包进行二次开发,可自动完成对图像采集、显示、存储和处理。在选购机器视觉软件时,一定要注意开发硬件环境、开发操作系统、开发语言等,确保软件运行稳定,方便二次开发。

  机器视觉系统原理:机器视觉系统的目得就是通过机器视觉产品(即光源、镜头、相机、采集卡)将被拍摄的目标转换为图像信号,传送给机器视觉软件(即图像处理系统),来代替人眼的测量、检测和判断。其原理是由计算机、图像处理器以及相关设备来模拟人的视觉行为,完成得到人的视觉系统所得到的信息。随着微型计算机技术、网络技术、大数据融入技术发展,相信未来机器视觉系统将会代替人类完成更多难以完成的工作。返回搜狐,查看更多

上一篇:机器视觉光源的分类及颜色选择
下一篇:赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

相关信息

  • 赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

    赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

      同花顺300033)金融研究中心8月16日讯,有投资者向赛为智能300044)提问, 华为今天成立机器视觉军团!公司是机器视觉龙头,请问公司是不是华为的战略伙伴?如实回答!  公司回答表示,您好,公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作。感谢您对公司的关注!  热门评论网友评论只代表同花顺网友的个人观点,不代表同花顺金融服务网观点。  抢先看!3305家A股半年报出炉,有色、煤炭、电力设备等表现强势,26股净利润增超10倍(附名单)  中美将于近期启动审计监管合作,有望缓解中概股退市风险,向市场释放积极信号  迄今为止,共1家主力机构,持仓量总计1234.19万股,占流通A股1.84%  近期的平均成本为4.47元,股价在成本下方运行。多头行情中,目前处于回落整理阶段且下跌有加速趋势。该股资金方面呈流出状态,投资者请谨慎投资。该公司运营状况良好,多数机构认为该股长期投资价值一般。  限售解禁:解禁511.2万股(预计值),占总股本比例0.66%,股份类型:股权激励限售股份。(本次数据根据公告推理而来,实际情况以上市公司公告为准)  限售解禁
  • 产品表面缺陷检测属于机器视觉技术的一种

    产品表面缺陷检测属于机器视觉技术的一种

      产品表面缺陷检测属于机器视觉技术的一种,就是利用计算机视觉模拟人类视觉的功能,从具体的实物进行图象的采集处理、计算、最终进行实际检测、控制和应用。产品的表面缺陷检测是机器视觉检测的一个重要部分,其检测的准确程度直接会影响产品最终的质量优劣。由于使用人工检测的方法早已不能满足生产和现代工艺生产制造的需求,而利用机器视觉检测很好地克服了这一点,表面缺陷检测系统的广泛应用促进了企业工厂产品高质量的生产与制造业智能自动化的发展。  应用表面缺陷检测系统,提高了检测的准确度和效率。那么,在进行产品表面检测之前,有几个步骤需要注意。  第二,对采集过来的图像进行一步分割处理,使得产品表面缺陷能够按照其特有的区域特征进行分类;  第三,在以上分类区域中进一步分析划痕的目标区域,使得范围更加的准确和精确。  通过以上的三步处理之后,产品表面缺陷区域和特征能够进一步确认,这样表面缺陷检测的基本步骤就完成了。  为了适应现今这个发展越来越快的社会,机器视觉检测技术是必不可少的。在一些不合适人类工作的环境场所机器视觉就可以代替人类。机器视觉检测技术分类:  (1)一般来说,机器视觉检测技术依照检测功用可
  • 机器视觉在玻璃瓶质量检测中的应用

    机器视觉在玻璃瓶质量检测中的应用

      在玻璃瓶子的生产中,因为制作工艺的复杂,不可避免会有各种各样缺陷产品,给产品品质增添了比较严重的危险性。 为了能产品的工厂品质,生产商一般借助大量人工查验来挑选废料。 但手动式检测速度比较慢,必须耗费很多人力、物力资源与现场网络资源,人的眼睛在长期工作后很容易出现疲惫和粗心大意,所以没法合理确保产品品质。  由于电子计算机技术发展越来越多公司应用机器视觉检测技术性替代人工品质检测还可以在不顾及主观原因的情形下系统化设置检测规范。 能持续、精确、靠谱地开展软件测试工作、工业生产产品自动化技术、智能开发。  机器视觉检测系统是指将机器视觉产品(CMOS和CCD )拍的目标物转换为图象数据信号,传达给专用图像处理系统,依据清晰度遍布和色度等状况转换为数字信号的功率系统软件。 图像系统对这种数据信号进行一定的计算,获取总体目标特点,依据鉴别结论操纵现场设备个人行为,开展视觉效果检测、尺寸检测、缺陷检测、系统定位等。  智能制造生产环节中检测产品比人工检测高效率,准确性性能稳定,具备数字管理、信息集成作用,避免人为因素二次污染,防止接触产品,在恶劣环境下检测,长期用低成本。 可以这么说广泛用
  • 基于机器视觉技术的外观瑕疵检测方案

    基于机器视觉技术的外观瑕疵检测方案

      工业领域中为了保证产品的质量,传统的人工检测方式已经不能满足现在的发展,为了避免因瑕疵、外观缺陷对品牌、口碑和质量造成影响,最好使用先进技术进行外观质量把控。基于深度学习技术打造,巧妙结合了将优秀的测量硬件与机器学习技术算法,能够实现可靠的高速视觉缺陷检测。这将使机器视觉外观检测提升到“工业4.0”时代。  精质视觉外观检测技术高达95%准确率通过深度学习算法、高级图像处理、模式识别实现高达95%准确率。实现瑕疵与尺寸检测的自动化,检测效率高,对于过去不得不依赖人眼判断的外观检测,随着视觉系统及视觉系统技术的进步,细微异物、瑕疵、缺陷的检测也成为了可能。  在机器视觉技术里面,表面外观缺陷检测是一种无触摸,无损伤的自动识别的技术。是维护自动化技术,智能化系统,高精度运行的合理途径。 它比人工检测更具有可靠性,在复杂环境中长期工作和高生产率等优点。  外观缺陷检测系统可以将平面成像图片产品图像进行预处理后,进行一系列的操作,按照要求输出结果,或显示或执行。

手机扫一扫添加微信