欧宝平台登录:机器视觉自学需要学什么_学机器视觉好找工作吗

发布时间:2022-08-21 11:19:51 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播

  要想学好机器视觉,需要对机器视觉的知识体系有所了解。下面我们就来分享一下各个部分需要掌握的知识点。

  图像采集:需要对镜头、光源、相机(CCD)的选型有所了解,有经验的工程师说打光是图像采集的关键。图像采集是对我们后续工作的支撑,采集不到好的图像,对图像处理就会难上好几倍甚至几百倍。

  图像处理:图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。需要熟知对图像处理的原理以及方式方法。其他的通用的滤波、连通域、腐蚀膨胀等也都需要了解一下。

  Halcon:编程和演示界面比较的友好,方便编程人员做二次开发,可生成C/C++文件,很容易嵌入到VC等编译环境下,对于有计算机基础或是有编程基础的同学,还是很容易就能够上手的。

  OpenCV:这个软件开源资料会比较多,用C/C++编写,对于学习基础要求也不高,只需要对编程有兴趣或是会基本编程的都。

  对于要学习机器视觉,会单纯的理论和编程是不够的,最好是以项目为基础,从立项开始,一步步完成自己设计的项目目标。这样才能够快速提升你的能力。

  如果你是对机器视觉感兴趣或是想往这方面去发展,可以先选好一个适合自己的部分,结合实际,综合提高自己的水平。

  这几年机器视觉的应用真的是风生水起。特别是在工业4.0,大数据,AI,深度学习这些高大上高科技名词的带动下,机器视觉越来越被企业老板接受。大的小的项目,旧的新的设备都在陆续应用上机器视觉。

  比如大家熟悉的PLC,十几年前市面上PLC学习资料很少,书店都买不到像样的。现在PLC相关的资料,纸质的,电子的,图文的,视频的,真的是满天飞。PLC已极度普及,想学习的人多,培训市场需求量巨大。

  同样机器视觉也将会是下一个PLC,当前正处在高速推广时期。可以先人一步,学习机器视觉,相对只会PLC的,竞争力要大很多。我刚开始是搞PLC,后面工作上开始有大量视觉需求,也自学了工业视觉,现在也一直在用视觉,偶尔也可以帮别人做些项目啥的。简单二维识别,一维测量都可以开好几千。看下图视觉应用场景就高大上,怎么会没前途?

  可以从应用开始学习。如果我们学习视觉只是应用,做项目开发设备,完成实际的生产任务。相对来讲还是很简单的,我们可以从熟悉一款视觉库开始。熟练应用视觉库,熟悉函数,熟悉算法,熟悉专业名词,进而触类旁通,可以使用其他库,或研究算法内部的原理。建议可以下载学习版本的HALCON。其带有大量实用例程,丰富的函数介绍,完全可以借助HALCON自带的这些资料快速上手。如下图为部分例程。

  更多精彩阅读:机器视觉是什么意思_机器视觉应用案例机器视觉的任务_机器视觉的基本工作过程是怎样的机器视觉用什么语言开发_机器视觉用什么硬件

上一篇:机器视觉需要学什么 如何快速入门
下一篇:赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

相关信息

  • 赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

    赛为智能:公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作

      同花顺300033)金融研究中心8月16日讯,有投资者向赛为智能300044)提问, 华为今天成立机器视觉军团!公司是机器视觉龙头,请问公司是不是华为的战略伙伴?如实回答!  公司回答表示,您好,公司从未自诩过“机器视觉龙头”。公司曾与华为在智慧城市、大数据等领域开展过战略合作。感谢您对公司的关注!  热门评论网友评论只代表同花顺网友的个人观点,不代表同花顺金融服务网观点。  抢先看!3305家A股半年报出炉,有色、煤炭、电力设备等表现强势,26股净利润增超10倍(附名单)  中美将于近期启动审计监管合作,有望缓解中概股退市风险,向市场释放积极信号  迄今为止,共1家主力机构,持仓量总计1234.19万股,占流通A股1.84%  近期的平均成本为4.47元,股价在成本下方运行。多头行情中,目前处于回落整理阶段且下跌有加速趋势。该股资金方面呈流出状态,投资者请谨慎投资。该公司运营状况良好,多数机构认为该股长期投资价值一般。  限售解禁:解禁511.2万股(预计值),占总股本比例0.66%,股份类型:股权激励限售股份。(本次数据根据公告推理而来,实际情况以上市公司公告为准)  限售解禁
  • 产品表面缺陷检测属于机器视觉技术的一种

    产品表面缺陷检测属于机器视觉技术的一种

      产品表面缺陷检测属于机器视觉技术的一种,就是利用计算机视觉模拟人类视觉的功能,从具体的实物进行图象的采集处理、计算、最终进行实际检测、控制和应用。产品的表面缺陷检测是机器视觉检测的一个重要部分,其检测的准确程度直接会影响产品最终的质量优劣。由于使用人工检测的方法早已不能满足生产和现代工艺生产制造的需求,而利用机器视觉检测很好地克服了这一点,表面缺陷检测系统的广泛应用促进了企业工厂产品高质量的生产与制造业智能自动化的发展。  应用表面缺陷检测系统,提高了检测的准确度和效率。那么,在进行产品表面检测之前,有几个步骤需要注意。  第二,对采集过来的图像进行一步分割处理,使得产品表面缺陷能够按照其特有的区域特征进行分类;  第三,在以上分类区域中进一步分析划痕的目标区域,使得范围更加的准确和精确。  通过以上的三步处理之后,产品表面缺陷区域和特征能够进一步确认,这样表面缺陷检测的基本步骤就完成了。  为了适应现今这个发展越来越快的社会,机器视觉检测技术是必不可少的。在一些不合适人类工作的环境场所机器视觉就可以代替人类。机器视觉检测技术分类:  (1)一般来说,机器视觉检测技术依照检测功用可
  • 机器视觉在玻璃瓶质量检测中的应用

    机器视觉在玻璃瓶质量检测中的应用

      在玻璃瓶子的生产中,因为制作工艺的复杂,不可避免会有各种各样缺陷产品,给产品品质增添了比较严重的危险性。 为了能产品的工厂品质,生产商一般借助大量人工查验来挑选废料。 但手动式检测速度比较慢,必须耗费很多人力、物力资源与现场网络资源,人的眼睛在长期工作后很容易出现疲惫和粗心大意,所以没法合理确保产品品质。  由于电子计算机技术发展越来越多公司应用机器视觉检测技术性替代人工品质检测还可以在不顾及主观原因的情形下系统化设置检测规范。 能持续、精确、靠谱地开展软件测试工作、工业生产产品自动化技术、智能开发。  机器视觉检测系统是指将机器视觉产品(CMOS和CCD )拍的目标物转换为图象数据信号,传达给专用图像处理系统,依据清晰度遍布和色度等状况转换为数字信号的功率系统软件。 图像系统对这种数据信号进行一定的计算,获取总体目标特点,依据鉴别结论操纵现场设备个人行为,开展视觉效果检测、尺寸检测、缺陷检测、系统定位等。  智能制造生产环节中检测产品比人工检测高效率,准确性性能稳定,具备数字管理、信息集成作用,避免人为因素二次污染,防止接触产品,在恶劣环境下检测,长期用低成本。 可以这么说广泛用
  • 基于机器视觉技术的外观瑕疵检测方案

    基于机器视觉技术的外观瑕疵检测方案

      工业领域中为了保证产品的质量,传统的人工检测方式已经不能满足现在的发展,为了避免因瑕疵、外观缺陷对品牌、口碑和质量造成影响,最好使用先进技术进行外观质量把控。基于深度学习技术打造,巧妙结合了将优秀的测量硬件与机器学习技术算法,能够实现可靠的高速视觉缺陷检测。这将使机器视觉外观检测提升到“工业4.0”时代。  精质视觉外观检测技术高达95%准确率通过深度学习算法、高级图像处理、模式识别实现高达95%准确率。实现瑕疵与尺寸检测的自动化,检测效率高,对于过去不得不依赖人眼判断的外观检测,随着视觉系统及视觉系统技术的进步,细微异物、瑕疵、缺陷的检测也成为了可能。  在机器视觉技术里面,表面外观缺陷检测是一种无触摸,无损伤的自动识别的技术。是维护自动化技术,智能化系统,高精度运行的合理途径。 它比人工检测更具有可靠性,在复杂环境中长期工作和高生产率等优点。  外观缺陷检测系统可以将平面成像图片产品图像进行预处理后,进行一系列的操作,按照要求输出结果,或显示或执行。

手机扫一扫添加微信