欧宝平台登录:挖掘客户数据的价值

发布时间:2022-08-19 04:08:55 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播

  数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。

  商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。

  经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。

  根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。

  针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。

  规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。

  应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、 评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。

  目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。

  实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果

  电线 传线 客服: 投稿:地址:北京市西城区新德街20号513室(100088)

上一篇:数据挖掘概念与技术(一):概念介绍
下一篇:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

相关信息

  • 中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

    中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

      原标题:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)  大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。  智研咨询发布的《2022-2028年中国大数据行业市场竞争态势及发展趋向分析报告》共九章。首先介绍了大数据行业市场发展环境、大数据整体运行态势等,接着分析了大数据行业市场运行的现状,然后介绍了大数据市场竞争格局。随后,报告对大数据做了重点企业经营状况分析,最后分析了大数据行业发展趋势与投资预测。您若想对大数据产业有个系统的了解或者想投资大数据行业,本报告是您不可或缺的重要工具。  本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。  报告研究基于研究团队收集到的大量一手和二手信息
  • 业务人员都能用这些功能降低了数据挖掘使用门槛

    业务人员都能用这些功能降低了数据挖掘使用门槛

      提起数据挖掘的应用,大家一般会想起预测分析。例如,预测明年公司的业绩将会是多少?哪些客户可能流失?而实际上,数据挖掘除了预测未来,还可以帮助企业进行聚类分析、推荐、异常监测、相关性分析等等,还能广泛应用于企业运营、生产控制、城市规划、市场分析等各个领域。  大家都知道数据挖掘牛逼,但是真正能把数据挖掘技术用起来的却并不多,究其原因,主要是觉得数据挖掘太难了!不仅需要用户具备一定的专业知识,还需要花费大量的精力进行算法选择、数据训练。所以,数据挖掘的门槛很高,非专业高阶人士不可用。  那对于想用数据挖掘功能的普通用户来说,他们该怎么实现数据更深层的价值挖掘呢?下面,小麦给大家介绍Smartbi产品数据挖掘的一些功能,这些功能非常简单便捷,就算是业务人员都可以使用:  封装意味着屏蔽了底层技术的复杂性,留给用户的是可见的成品。Smartbi产品封装20+数据预处理方法、10+特征工程方法、50+数据挖掘算法,含统计分析、文本分析、分类、回归、聚类、关联算法等,用于对数据进行统计、处理、分析、预测和分类。  创建实验时,虽然通过拖拽即可进行组件的组合和流程的创建,但有的用户可能还是会觉得
  • 数字挖掘:智慧金融的新基建

    数字挖掘:智慧金融的新基建

      数据挖掘这个概念早在上世纪90年代中期由IBM提出来,到现在大概已经有二十五六年的时间了,英文叫做data mining,我翻译成中文叫做数据挖掘。数据挖掘主要是从大量的数据中提取有用的信息,把这些信息结合行业知识,运用到我们的决策过程中去,这就是数据挖掘最主要的含义。  所以它包含几层含义,第一个是包括数据,包括数据的整合;第二个很重要的问题是数据的分析,也就是今天所谓人工智能里面的很多算法;第三个因为数据挖掘是一定要应用到某一个行业里面去,解决具体的问题,所以行业知识很重要;第四个是加上数据,加上分析的结果,加上行业的知识,然后把它运用到这个行业的决策过程中去,这是数据挖掘整个的过程。  刘世平:数据挖掘解决了很多金融方面的一些问题,那么它跟大数据时代是密切相关的。大数据演变的过程,应该已经有33年的历史了,最早在1987年的时候,提出了一个概念叫做数据仓库,英文叫做data warehouse。它主要是指把分散在各个地方,一个企业或一个政府里边不同地方的数据进行有效的整合,提炼出来同一系列的手段和方法把数据里边的信息能够提炼出来,然后结合行业知识用于决策的过程,所以数据挖掘更
  • 统计学专业就业方向及前景

    统计学专业就业方向及前景

      统计学专业就业方向主要是到政府统计部门、经济管理部门,银行、证券公司、保险公司等金融机构以及信息咨询公司等从事研究和教学工作或者到大型企业部门从事数据分析工作。  统计学专业就业方向包括保险类企业:保险精算、业务统计,市场调查类企业,市场调查、数据分析,各类企业,咨询、调研、经济分析、数据分析。  具体岗位:出纳员、会计、财务助理、审计专员和助理、财务主管、统计员、财务经理、财务、总帐主管、财务分析员、会计或会计师  具体岗位:区域销售专员或助理、大客户经理、经销商、大客户销售、业务拓展主管和经理、客户经理助理、销售、业务主管、大客户销售代表、业务拓展专员和助理  具体岗位:数据分析员、数据分析师、运营主管、高级运营经理、运营专员、运营经理、数据分析岗、数据分析经理、数据分析主管、数据分析专员  具体岗位:数据统计分析员、数据分析师、数据工程师、软件工程师、兼职、数据分析、数据挖掘工程师、实习生、数据支持  具体岗位:助理、秘书、行政专员、经理助理和秘书、行政专员和助理、总裁助理和总经理助理、行政经理和主管、助理和秘书、经理助理、办公室主任、文员、总经理助理、文员  在国内,统计学

手机扫一扫添加微信