欧宝平台登录:关于数据分析师的学习路线这是我见过最全面的!

发布时间:2022-08-26 18:14:11 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播

  以上这些问题,相信各位想入门数据分析的小伙伴们或多或少都会遇到,今天,小编就给大家全方位科普一下,数据分析入门学习路径!

  统计学是一种利用数学理论来进行数据分析的技术,通过统计学我们可以用更富有信息驱动力和针对性的方式对数据进行操作。

  在数据分析工作中,利用统计学,我们可以更深入、更细致地观察数据是如何进行精确组织的,并且基于这种组织结构确定数据分析的方法,来获取更多的信息。

  毫不夸张的说统计学是整个数据分析的灵魂。判别一个数据分析师强弱的一个重要方法就是,看他对统计规律的敏感度。

  这里我们需要从基础的统计理论(描述性统计、区间估计、假设检验等)出发,到基本的统计分析(T 检验、方差分析等),最后到商业常用的模型(回归分析、方差分析等),学习数据分析背后的逻辑,掌握实用统计学的概念和会利用统计的思维去思考问题。

  由浅入深的总结了「统计学」领域的基础知识,涵盖了至今为止所有与统计有关的学习笔记。

  机器学习相关的知识学习成本会比较高,对某些同学来说可能会有一定难度,但对于业务型数据分析师来说,一般不会要求你去推导算法公式,能做到明白不同算法的适用场景、优缺点、原理大概懂就基本可以了。

  Excel 应该是数据分析师最常用的统计分析工具了,原因是因为方便,所见即所得,而且具有方便的可视化功能。应该说只有学会了Vlookup,数据透视和基本公式才算 Excel 入门,其次 Excel 最大的惊喜是数据可视化,拥有大量的图表模板,可以减轻我们很多工作。

  作为数据分析人员,要想获取数据,肯定就要和数据库打交道,因此SQL肯定是要掌握的,在招聘要求中,SQL也是很多数据分析岗位的能力要求之一。

  学习SQL最快的方法是能自己下载数据库管理工具,找些数据练习,主要了解一些数据库查询语言。

  Python作为目前最火的编程软件之一,确实在数据分析、数据挖掘上有着独特优势。是否具备编程能力,也是初级数据分析和高级数据分析的分水岭。

  要学习的内容挺多的,但其实python最大的优势就是语言简约,非常易于读写,如果之前有一定的编程基础,上手很快。

  学习资料:《Python基础知识思维导图》+《Python入门常见单词集合》

  “无尺度网络模型”的作者艾伯特-拉斯洛·巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。

  你发现的规律很可能是不定时会出现的现象,可能这一时段都是这样,那么如何验证是否如此?就需要来做测试,用小部分样本进行测试后得到结果在运用在正式方案中,这有利于防止错误的发生。

  经过前面的梳理和总结,相信小伙伴们对于数据分析入门学习的了解更加深刻了。可以有针对性地进行知识储备了!加油!

  本次推荐的爱数据LoveData公众号是爱数据教育旗下知识分享社区,每日发布数据分析领域行业资讯、干货知识(理论/技能/业务实战/求职)、学习资料分享、大咖直播......

上一篇:数据挖掘、机器学习和深度学习之间有什么区别?
下一篇:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

相关信息

  • 中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

    中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

      原标题:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)  大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。  智研咨询发布的《2022-2028年中国大数据行业市场竞争态势及发展趋向分析报告》共九章。首先介绍了大数据行业市场发展环境、大数据整体运行态势等,接着分析了大数据行业市场运行的现状,然后介绍了大数据市场竞争格局。随后,报告对大数据做了重点企业经营状况分析,最后分析了大数据行业发展趋势与投资预测。您若想对大数据产业有个系统的了解或者想投资大数据行业,本报告是您不可或缺的重要工具。  本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。  报告研究基于研究团队收集到的大量一手和二手信息
  • 业务人员都能用这些功能降低了数据挖掘使用门槛

    业务人员都能用这些功能降低了数据挖掘使用门槛

      提起数据挖掘的应用,大家一般会想起预测分析。例如,预测明年公司的业绩将会是多少?哪些客户可能流失?而实际上,数据挖掘除了预测未来,还可以帮助企业进行聚类分析、推荐、异常监测、相关性分析等等,还能广泛应用于企业运营、生产控制、城市规划、市场分析等各个领域。  大家都知道数据挖掘牛逼,但是真正能把数据挖掘技术用起来的却并不多,究其原因,主要是觉得数据挖掘太难了!不仅需要用户具备一定的专业知识,还需要花费大量的精力进行算法选择、数据训练。所以,数据挖掘的门槛很高,非专业高阶人士不可用。  那对于想用数据挖掘功能的普通用户来说,他们该怎么实现数据更深层的价值挖掘呢?下面,小麦给大家介绍Smartbi产品数据挖掘的一些功能,这些功能非常简单便捷,就算是业务人员都可以使用:  封装意味着屏蔽了底层技术的复杂性,留给用户的是可见的成品。Smartbi产品封装20+数据预处理方法、10+特征工程方法、50+数据挖掘算法,含统计分析、文本分析、分类、回归、聚类、关联算法等,用于对数据进行统计、处理、分析、预测和分类。  创建实验时,虽然通过拖拽即可进行组件的组合和流程的创建,但有的用户可能还是会觉得
  • 数字挖掘:智慧金融的新基建

    数字挖掘:智慧金融的新基建

      数据挖掘这个概念早在上世纪90年代中期由IBM提出来,到现在大概已经有二十五六年的时间了,英文叫做data mining,我翻译成中文叫做数据挖掘。数据挖掘主要是从大量的数据中提取有用的信息,把这些信息结合行业知识,运用到我们的决策过程中去,这就是数据挖掘最主要的含义。  所以它包含几层含义,第一个是包括数据,包括数据的整合;第二个很重要的问题是数据的分析,也就是今天所谓人工智能里面的很多算法;第三个因为数据挖掘是一定要应用到某一个行业里面去,解决具体的问题,所以行业知识很重要;第四个是加上数据,加上分析的结果,加上行业的知识,然后把它运用到这个行业的决策过程中去,这是数据挖掘整个的过程。  刘世平:数据挖掘解决了很多金融方面的一些问题,那么它跟大数据时代是密切相关的。大数据演变的过程,应该已经有33年的历史了,最早在1987年的时候,提出了一个概念叫做数据仓库,英文叫做data warehouse。它主要是指把分散在各个地方,一个企业或一个政府里边不同地方的数据进行有效的整合,提炼出来同一系列的手段和方法把数据里边的信息能够提炼出来,然后结合行业知识用于决策的过程,所以数据挖掘更
  • 统计学专业就业方向及前景

    统计学专业就业方向及前景

      统计学专业就业方向主要是到政府统计部门、经济管理部门,银行、证券公司、保险公司等金融机构以及信息咨询公司等从事研究和教学工作或者到大型企业部门从事数据分析工作。  统计学专业就业方向包括保险类企业:保险精算、业务统计,市场调查类企业,市场调查、数据分析,各类企业,咨询、调研、经济分析、数据分析。  具体岗位:出纳员、会计、财务助理、审计专员和助理、财务主管、统计员、财务经理、财务、总帐主管、财务分析员、会计或会计师  具体岗位:区域销售专员或助理、大客户经理、经销商、大客户销售、业务拓展主管和经理、客户经理助理、销售、业务主管、大客户销售代表、业务拓展专员和助理  具体岗位:数据分析员、数据分析师、运营主管、高级运营经理、运营专员、运营经理、数据分析岗、数据分析经理、数据分析主管、数据分析专员  具体岗位:数据统计分析员、数据分析师、数据工程师、软件工程师、兼职、数据分析、数据挖掘工程师、实习生、数据支持  具体岗位:助理、秘书、行政专员、经理助理和秘书、行政专员和助理、总裁助理和总经理助理、行政经理和主管、助理和秘书、经理助理、办公室主任、文员、总经理助理、文员  在国内,统计学

手机扫一扫添加微信