欧宝平台登录:聊聊我的Python学习之路都看了哪些书

发布时间:2022-08-26 18:14:25 来源:欧宝体育直播nba 作者:欧宝体育手机版app直播

  准确的说我是从2014年的9月份开始接触Python的,那会由于工作需要,硬着头皮开始学习Python,不怕各位笑话,我的第一本Python启蒙书籍是《与孩子一起学编程》。这本书真的非常通俗易懂,从什么是变量、基本的数学运算、数据类型到复杂一点的控制流语法和应用,再到Python的几种数据结构讲解等等,同时也会将这些基础知识拼起来写一个和小孩一起玩的游戏(尽管自己对游戏没有什么兴趣,但还是照书抄代码了)。

  说这段经历的目的是想说明,你必须得明确自己学习Python的目的是什么,因为对于一个初学者来说,经常向度娘或周边的朋友询问:“学习Python,有什么书可以推荐吗?”如果不搞清楚自己学习的目的,那这个问题其实是白问的。因为Python能做的事实在是太多了,对于这个问题,你会得到五花八门的答案,此时你也会疑惑,这么多可供选择的初级书,我该选择哪一本呢?所以,首先问自己,我学习Python是用它来搞运维?还是用它来做开发?还是用它来完成你的数据分析与挖掘?很显然,对于我来说,我应该是用它帮助我完成数据分析或挖掘的工作任务。

  如果你对数据分析或挖掘感兴趣,那这篇文章也许对你会有一点帮助,接下来就跟大家分享一下自己学习Python的一点点经验,内容会涵盖Python基础储备、Python数据分析、Python数据可视化和Python数据挖掘几个部分。

  不管你学习什么新东西,都必须牢记一条,基础必须夯实牢,因为基础能够决定你能走多远。所以,学习Python也需要你静下心来好好的掌握一下它的基础知识,如基本的数据结构(列表、元组、字典)及对应的方法、字符串处理方法、控制流和自定义函数、正则表达式、文件处理、异常处理、类的创建等等。关于这部分的学习,有很多参考书可供选择,如:

  《Python简明教程》: 这是一本只有100页左右的小册子,你可以迅速的浏览并敲一遍代码,或多或少都会提升你的Python基础能力;

  《笨方法学Python》: 这本书同样非常的短小精悍,全书是以习题的形式让读者掌握有关Python的基础知识,里面的代码建议读者能够敲一遍;

  关于Python基础储备方面的书籍我就推荐这三本,书不在多,只要你用心看完一本书就是对自己的挑战,希望读者能够记住:基础决定你能走多远这句话。

  当你掌握了有关Python的基础知识后,你就可以尝试着去学习Python在数据分析和挖掘中的应用了。众所周知,随着大数据时代的到来,数据分析显得尤其重要和火热,那么相应的关于Python做数据分析的第三方模块也越来越多,例如numpy用于数值计算、随机数生成等功能、pandas用于数据的清洗和整理等功能、statsmodels和scipy用于统计建模和各种假设检验等功能、matplotlib用于数据数据可视化、sklearn用于常见的数据挖掘算法的落地等。

  《Python数据分析》: 这本书可以作为《利用Python进行数据分析》的补充版,处理介绍numpy、pandas、matplotlib等模块的知识与应用,还谈及了文本挖掘与机器学习部分(但这部分内容也不是特别难),所以我觉得这是一本非常适合Python新手的书籍;

  《Python数据分析与数据化运营》: 一本524页的厚书,覆盖的内容非常丰富,几乎涉及了数据分析和挖掘的所有知识点。这本书的最大亮点是基于各种运营场景,介绍数据分析对运营的帮助,是一本名副其实的数据化运营的书籍;

  有关更多的类似numpy、pandas数据处理模块的讲解,读者可以自行查阅官网的文档说明。

  数据可视化的目的就是让读数据的人留下直观而深刻的记忆,这也是数据分析过程中必备的技能,一方面方便自己和读者发现数据的规律和关系,另一方面也是数据的一种展现方式。关于专门讲Python可视化的书,在市面上并不多,这里就跟大家分享一本我认为非常棒的书吧:

  更多有关matplotlib模块的内容学习,读者可以查看官网的文档说明。关于数据可视化的实现,除了matplotlib这个模块,还有seaborn模块、bokeh模块、plotly模块等,同样你可以通过搜索关键词,到其对应的官网查看更多的帮助文档。

  数据挖掘部分相对而言要难一些,光实现数据挖掘的操作还不够,还需要一定的数学功底,正如吴恩达所说,数学只是机器学习的基础。对于一般常用的预测模型、分类模型和聚类模型都可以通过Python的sklearn模块实现,所以实操不难。重要的是理论知识的掌握,这里介绍几本理论方面的书:

  《数据挖掘导论》: 非常适合数据挖掘入门,内容详实,讲解的条理也很清晰;

  《数据挖掘概念与技术》: 同样是一本不可多得的好书,首先介绍挖掘方法的概念和理论知识,然后通过某些数据集来完成手工计算的过程,对于读者来说,具有代入感,学习起来也会比较有劲;

  《统计学习方法》: 是一本完全偏理论的书籍,包含了很多算法的推理过程,如knn算法、贝叶斯算法、决策树算法、支持向量机算法等,这些推理对读者的数学知识要求比较高;

  书虽好,但都需要一定的数学基础才能看上面的内容,关于数学基础大学里学的高等数学、线性代数、概率论、统计学等基本上就够用了。如果觉得自己不够扎实,赶快去充充电哦。

  《Python数据挖掘入门与实践》: 该书的译者竟然是英语专业学生,是不是惊呆了!全书通篇都是讲解有关数据挖掘的实战案例,如使用决策树预测获胜球队、使用神经网络破解验证码、使用k均值完成新闻语料的分类等等,基本都是基于sklearn这个模块来实现的;

  《机器学习实战》: 这本书对读者的编程技能要求比较高,几乎所有的挖掘算法都是一个重复造轮子的过程(可能不太适合调包侠),我觉得该书的最大优点就是加强对算法的理解,一遍讲解算法,一遍通过基本的编程将算法进行重现;

  《Python大战机器学习》: 这是一本阿里的算法工程师编写的书籍,全书一共包含13个章节,涉及到数据挖掘的所有常规模型,如线性模型、树模型、贝叶斯模型、支持向量机、神经网络、聚类模型等。本书的每一个章节都从两方面介绍,一方面是模型的理论说明,另一方面则是介绍sklearn模块下对应的代码方案。

上一篇:关于数据分析师的学习路线这是我见过最全面的!
下一篇:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

相关信息

  • 中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

    中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)

      原标题:中国大数据行业市场竞争态势及发展趋向分析报告(2022-2028年)  大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。  智研咨询发布的《2022-2028年中国大数据行业市场竞争态势及发展趋向分析报告》共九章。首先介绍了大数据行业市场发展环境、大数据整体运行态势等,接着分析了大数据行业市场运行的现状,然后介绍了大数据市场竞争格局。随后,报告对大数据做了重点企业经营状况分析,最后分析了大数据行业发展趋势与投资预测。您若想对大数据产业有个系统的了解或者想投资大数据行业,本报告是您不可或缺的重要工具。  本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。  报告研究基于研究团队收集到的大量一手和二手信息
  • 业务人员都能用这些功能降低了数据挖掘使用门槛

    业务人员都能用这些功能降低了数据挖掘使用门槛

      提起数据挖掘的应用,大家一般会想起预测分析。例如,预测明年公司的业绩将会是多少?哪些客户可能流失?而实际上,数据挖掘除了预测未来,还可以帮助企业进行聚类分析、推荐、异常监测、相关性分析等等,还能广泛应用于企业运营、生产控制、城市规划、市场分析等各个领域。  大家都知道数据挖掘牛逼,但是真正能把数据挖掘技术用起来的却并不多,究其原因,主要是觉得数据挖掘太难了!不仅需要用户具备一定的专业知识,还需要花费大量的精力进行算法选择、数据训练。所以,数据挖掘的门槛很高,非专业高阶人士不可用。  那对于想用数据挖掘功能的普通用户来说,他们该怎么实现数据更深层的价值挖掘呢?下面,小麦给大家介绍Smartbi产品数据挖掘的一些功能,这些功能非常简单便捷,就算是业务人员都可以使用:  封装意味着屏蔽了底层技术的复杂性,留给用户的是可见的成品。Smartbi产品封装20+数据预处理方法、10+特征工程方法、50+数据挖掘算法,含统计分析、文本分析、分类、回归、聚类、关联算法等,用于对数据进行统计、处理、分析、预测和分类。  创建实验时,虽然通过拖拽即可进行组件的组合和流程的创建,但有的用户可能还是会觉得
  • 数字挖掘:智慧金融的新基建

    数字挖掘:智慧金融的新基建

      数据挖掘这个概念早在上世纪90年代中期由IBM提出来,到现在大概已经有二十五六年的时间了,英文叫做data mining,我翻译成中文叫做数据挖掘。数据挖掘主要是从大量的数据中提取有用的信息,把这些信息结合行业知识,运用到我们的决策过程中去,这就是数据挖掘最主要的含义。  所以它包含几层含义,第一个是包括数据,包括数据的整合;第二个很重要的问题是数据的分析,也就是今天所谓人工智能里面的很多算法;第三个因为数据挖掘是一定要应用到某一个行业里面去,解决具体的问题,所以行业知识很重要;第四个是加上数据,加上分析的结果,加上行业的知识,然后把它运用到这个行业的决策过程中去,这是数据挖掘整个的过程。  刘世平:数据挖掘解决了很多金融方面的一些问题,那么它跟大数据时代是密切相关的。大数据演变的过程,应该已经有33年的历史了,最早在1987年的时候,提出了一个概念叫做数据仓库,英文叫做data warehouse。它主要是指把分散在各个地方,一个企业或一个政府里边不同地方的数据进行有效的整合,提炼出来同一系列的手段和方法把数据里边的信息能够提炼出来,然后结合行业知识用于决策的过程,所以数据挖掘更
  • 统计学专业就业方向及前景

    统计学专业就业方向及前景

      统计学专业就业方向主要是到政府统计部门、经济管理部门,银行、证券公司、保险公司等金融机构以及信息咨询公司等从事研究和教学工作或者到大型企业部门从事数据分析工作。  统计学专业就业方向包括保险类企业:保险精算、业务统计,市场调查类企业,市场调查、数据分析,各类企业,咨询、调研、经济分析、数据分析。  具体岗位:出纳员、会计、财务助理、审计专员和助理、财务主管、统计员、财务经理、财务、总帐主管、财务分析员、会计或会计师  具体岗位:区域销售专员或助理、大客户经理、经销商、大客户销售、业务拓展主管和经理、客户经理助理、销售、业务主管、大客户销售代表、业务拓展专员和助理  具体岗位:数据分析员、数据分析师、运营主管、高级运营经理、运营专员、运营经理、数据分析岗、数据分析经理、数据分析主管、数据分析专员  具体岗位:数据统计分析员、数据分析师、数据工程师、软件工程师、兼职、数据分析、数据挖掘工程师、实习生、数据支持  具体岗位:助理、秘书、行政专员、经理助理和秘书、行政专员和助理、总裁助理和总经理助理、行政经理和主管、助理和秘书、经理助理、办公室主任、文员、总经理助理、文员  在国内,统计学

手机扫一扫添加微信